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Abstract

Extractionof contoussin binaryimagesis animportantele-
mentof objectrecagnition. This paperdiscusses mote ef-

ficientapproacd to contourrepresentatiorand geneation.

Thisappmad definesa boundingpolygonasdefinedby its

verticesratherthanbyall enclosingpixels,whichin itselfis

an effectiverepresentationThesecorners canbeidentified
by corvolution of the image with a 3x3filter. Whenthese
corneisare organizedoytheir connectingorientation,iden-
tified by the corvolution, and type inside or outside con-
nectivity characteristicscan be articulated to highly con-
strain thetaskof sortingtheverticesinto orderedboundary
lists. Theseach for thenext boundingpolygonvertex is re-

ducedo aonedimensionaminimumdistanceseach rather
thanthe standad, more intensivetwo dimensionaheaest
Euclideanneighborsearch.

1 Introduction

This paperdescribesa methodto decomposéhe contour
extraction from binary imagesinto two stages. The first
stageis a parallelizableidentificationof a reducedset of
contourfeatures. The secondstageis combinatorialcon-
tourconstructionthatis greatlyreducedn compleity from
simple contourfollowing approachesThis new algorithm
cangreatly reducethe computationaburdenof the prob-
lemcomparedo previousalgorithmsfor contourextraction,
while atthesametime allowing the parallelizatiorof theal-
gorithm.

The mostbasicalgorithmfor contourextractionusesan
automatorto traversethe contourpixel by pixel, or amore
comple versioninvolving multiple partial lists build dur-
ing arasterscanof theimage[1]. Althoughthis approach
is intuitively clear it doesnot take advantageof the parallel
natureof the task, nor of the useful propertiesof the con-
tours. The chain-codingmethodof representationisesthe
obsenation that contourboundarypixels can be extracted
usinga corvolution-styleoperation[2, andcontourscanbe
generatedisingthe knowledgethattheseedgepixels need
to bearrangedothey arein alist accordingto connectvity
[3]. Otherresultsexplorethe conceptof usingcontourfea-

tureswith logical completenesto represenbi-levelimages
[4] [5], namingthesefeaturestransitionpoints developed
for purpose®f losslessncodingratherthanefficient con-
tour extraction.

The methodpresentedn this papergoesbeyond previ-
ousresultsby distilling a setof high-level featureshatnot
only representheimagecontourswithout lossof informa-
tion, but have thefurtherpropertythatthelogical extraction
of contoursis efficient throughinherentconstraintsof the
proposedeatureset.

Section2 presentghe detailsof a simple examplethat
illustratesthe feature-baseaontour generationconcepts.
Section3 fills in detailsthat extend the conceptinto gen-
erality. Section4 discussesxpectedperformancesnhance-
mentswith this method.

2 Contour Generation Method Con-
cepts and Example

The contourextractionalgorithmis organizedinto two al-
gorithmsthat operatein sequencefeatureextraction,and
contourgeneration.

2.1 FeatureExtraction

Figurel shavs anexampleobjectfrom which contourfea-
turesareto be extracted,with featuresexplicitly labelled.
Thesefeaturesarethe cornerpixelsin the object, bothin-

terior andexterior. The cornersaredistinctly orientatedso
therearefour typesof outsidecornersthatwill be referred
toas01,02,03,04andtherearefour correspondingnside
corners]1,12,13,14. Thefigureshons the methodslabeling
of outsideandinsidecornersn the object,whichcanbeac-
complishedn a numberof ways. Themoststraightforward
is throughthe corvolution overtheimagewith a 3x3 matrix
whoseresultis to producea numericcodefor eachof the 8

typesof featuresFor example,convolve with the matrix
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Figurel: Exampleimagewith contourfeaturedabelled

Tablel: List of Figurel's extractedpointsby featuretype

FeaturelType | MemberPixel Coordinates
o1 (7,3), (3,7)

02 (10,3), (14,7)

03 (14,10), (10,14)

04 (3,10), (7,14)

11 (7,7)

12 (10,7)

13 (10,10)

14 (7,10)

whichresultsin the numericresults:
01 =27,02=216,03 = 432,04 = 54
I1 = 255,12 = 207,13 = 510, 4 = 447.
Thesefeaturesarethenextractedinto unorderedists by
type. Thelists of pointsextractedfrom theshapean Figurel
arecollectedin Table1. We presumeahroughouthatthere
are no foregroundpixels on the edgeof the image,which
canbeassuredy paddingwith aborderof background.
The numberof contourfeatureds a subsebf thewhole
contour andwill belessthanor, strictly, equalto the num-
ber of pixel edgesin the contour In typical caseswhere
there are horizontal and vertical runsin the contour the
numberof extractedcontourfeatureswill be significantly
smallerthanthe numberof pixel edgesn thecontour
Theseextractedlists represenin themseles a highly
compressed@ompleteversionof the original image. They
may alsobe usedto efficiently generatehe contours asil-
lustratedn the next section.

2.2 Contour Generation

Giventhe contourfeaturelists asdefinedabove, the algo-
rithm for the contourgenerationis a highly and uniquely

Table2: Constraintdor contourgeneratiorfrom the con-
tour features

CurrentContour | Next Contour | Dimensionand
Featurelype Featurelype | Directionof
Next Point
01,12 02,11 horizontal right
02,13 03,12 vertical,down
03,14 04,13 horizontal left
04,11 01,14 vertical,up

constmined combinationof theselists. Oncethe lists are
generategroperly the algorithmis straightforvard: Take
thestartingpointfor serialcontourgeneratiorio bethefirst
elemenbf theOllist, althoughthis choiceis arbitrary The
next point on thelist, giventhatwe arecurrentlyonanO1
point, mustcomefrom eitherthe O2 or the 1 lists. Further
the next point will be the closestpoint on theselists in a
specificdirectionalongonedimension:from an O1 point,
thenext pointonthecontourmustbeto theright, andit will
beonthesamehorizontalline. !

The searchthroughthe featurelists for the neighboring
pointon the contouris thusconstrainedo 2 of the 8 lists of
featurepoints. For eachnext cornersearch the algorithm
hastwo steps:find exact 1-D matd alongthe relevantdi-
mensionthenfind nearest1-D distancealongthe remain-
ing dimension. This greatly constrainsthe searchfor the
next contourfeatureon the contour in comparisorto the
generak-y searchproblemto locatetheclosesipixel in two
dimensionsTable2 shavs the completesetof constraints.

Thesimplestalgorithmfor producinga sequentialist of
contourfeaturesis to successiely find the closestcontour
featureaccordingto the above constraintsremoving that
featurefrom the list asit is generated.This algorithmcan
obviously be parallelized giventhe obsenationthat every
contourstageis independenof the last. Contoursegments
canbebuilt independentlyandthe sggmentsconstructedt-
eratiely, joining contourcornerfeaturesto make contour
line sggments,joining theseto make contour corner sey-
ments(two line segmentsat right angles),joining theseto
male contour4-line segmentsandso on. Eventuallythese
contoursegmentswill be joined to make a completecon-
tour.

3 General Contour Extraction

The previous sectionchosean illustrative examplefor ex-
planatorypurposesbut it doesnot cover all of the possible
configurationdeadingto inner and outer corners. For ex-
ample,therearethe issuesof directly neighboringcorners

1This descriptionpresume®ne of two symmetricsetsof constraints,
namelyclockwiseexterior bordergeneration.



Figure2: Exampleof valuesin diagonalpixel contact
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andcornersin diagonalcontact. This sectionwill present
two alternatve approacheto makingthe presented¢oncept
general. Thefirst approachthe doubleresolutionmethod,
enhanceghe methodonly slightly to dealwith pixel corner
contact,but hasthe disadantageof doublingthe computa-
tion of the imageconvolution/scanningstage. The second
approachthe directcornerextractionmethod,doesnot re-
quire changeof the input image, but introducescomplex-
ity in the featurelabeling and extraction stage. Although
thesetwo approacheareequialentin the abstracthe lat-
ter may be preferred,becausehe featureextraction stage,
which will usuallydominatethe total computatiortime, is
relatively smaller

3.1 DoubleResolution Method

The simplestcompletemethodis to doublethe resolution
of theinputimage,splitting eachpixel in theoriginalimage
into four pixelsin the new image. This eliminatesneigh-
boring pixel featureswhich causeadditionalcompleity in
featuretypesandcontourbuilding, by what canbe seenas
adding buffer pixels betweeneachfeature. The process,
from featureextractionthroughcontourgenerationcanbe
executedwith only minor additionsto thefeaturevaluelists
demonstratedbove.

We will assumaliagonalcontact,i.e. pixelsjoinedonly
at a singlecornerpoint, doesnot representonnectvity of
the foregroundobject, and corverselydoesrepresenton-
nectiity of the background. The corverseformulationis
alsopossible.

To completethelist of theabove corvolutionfilter’s pro-
ducedvaluesof interestwe mustalsotake into accounthe
additionalvaluesgeneratedy diagonalcontact.Examples
areshavnin Figure2. Thefour possiblediagonalkelections

Table 3: Correspondencbetweenpixel value andfeature
typefor thedoubleresolutionmethod

Pixel Value | FeatureType
27,283 o1

54,118 02

432,433 03

216,220 04

255 11

447 12

510 13

507 14

Figure3: Examplef single-pixel features
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add4 new outsidecornervalues,resultingin the complete
featurevaluelist shovnin Table3.

Thealgorithmusingthesevaluesandthe constraintsle-
scribedin theexamplesectionabovearesufiicientto extract
contoursfrom ary shape.The next sectiondiscussesnal-
ternative algorithmto completecontoursgenerallywithout
changeof theoriginalimage.

3.2 Direct Extraction of Pixel Corners

Directly moving to the mode of pixel cornersduring the
featureextractionphasds effectively equivalentto thedou-
ble resolutionapproachalthoughthe compleity is shifted
from the increasedcomputationin corwvolution, i.e., four
times the numberof pixels, to the numberof featuresre-
quired,tradingoff complexity for computation.

3.21 SinglePixel Features

The feature extraction processhere must incorporatea
much longer list of possibilities. For example, Figure 3
shavs new valuesassociatedvith single-pixel sizedfea-
tures. A significantchangehereis that the pixels of, e.g.,
type23and191in theexample,causeadditionsto two lists,



sincethey have morethanonesalientfeature,for example
type 23 representdwo outsidecorners,andtype 191 two
insidecorners.

3.22 Closure Asumptions

There are two possible closure assumptionsmentioned
briefly abose. One possibility is that pixels touchingat a
singlecornerrepresentontactof the foregroundandsepa-
ration of the background.This analysiswill take the oppo-
siteassumptionthatforegroundpixelstouchingat a single
cornerare not connected.This choiceis arbitrary andthe
methodcanbeimplementedindereitheralternatve.

3.2.3 Sub-pixel Corner Coordinates

It is necessaryo take measure$o ensurecornersfrom dif-
ferentpixels do not have the samerecordedocation. The
cornersfrom pixel type 191 (seeFigure 3) cannotboth be
listedasthe pixel centerwithoutintroducingcombinatorial
ambiguity If thepixel cornersaremovedto 1/2 native pixel
grid spacing(at £0.5 of the pixel coordinates)¢cornerposi-
tionsfrom pixelstouchingatasinglepointwill beidentical,
alsocausingambiguityin the combinatorialstage.The so-
lution is to take the cornersof a pixel to be inside a pixel,
sothatfor examplepixel type23 correspondso all feature
at(-0.25,-0.25)o thecurrentpixel centerandan|2 feature
at (+0.25,-0.25)to the currentpixel center A remapping
could insteadmaintaininteger valuesby simply multiply-
ing the fractional value by four, avoiding the overheadof
floating point computation.

3.2.4 FeatureGeneration

It isin thisoperatiorthattheoverallcompleity is increased
from the introductoryexample. Insteadof onefeatureper
pixel, we now have a maximumof 4 featuresper pixel, in
the caseof a singlepixel (four outsidecorners)or asingle
pixel sizedcross(four insidecorners) It is expectedhatthe
averagenumberof featuregercontourpixel will still allow
for significantcompleity savings versusmethodswhich
maintainall exterior edgepixels, sinceall horizontaland
verticalrunsareinherentlyeliminated. This saszings com-
poundgheinherentsavingsof theconstrainedombination.

The exhaustve list of pixel valuesandtheir associated
listsareshovn in Table4. Thislist includesrotationalsym-
metriesexpectedrom thesymmetricgrid. Thecornvolution
algorithmfor featureextractionof generatinghesevalues
thenkeying to list membershigcanbe reducedto a setof
moreefficientbooleanoperationdor efficiency.

Table4: Correspondencbetweenpixel value andfeature
typefor thedirectmethod

Pixel Value Featurelype
27,31,91,95,28287,347,351 01
54,55,118,119,80,311,374,375 02
432,433,436,43496,497,500,501 03
216,217,220,22472 473,476,477 04
182,183,246,24,248,249,252,25325 | 11
155,159,411,41840,441,444,445,447 | 12
62,126,218,222318382,474,478,510 | I3
59,123,315,37934,435,498,499,507 | 14
18,19,22,23,82.8,86,87,274,275,
278,279,338,33342,343 01,02
48,49,52,53,11213,116,117,304,
305,308,309,36869,372,373 02,03
144,145,148,14208,209,212,213,
400,401,404,40364,465,468,469 03,04
24,25,28,29,88.8,92,93,280,281,
284,285,344,34348,349 04,01
184,185,188,18991 11,12
154,158,410,41446 12,13
58,122,314,37%06 13,14
178,179,242,24251 14,11
254 11,13
443 12,14
26,30,90,94,28286,346,350 01,13
50,51,114,115,86 307,370,371 02,14
176,177,180,18240,241,244,245 03,11
152,153,156,15,408,409,412,413 04,12
190 11,12,13
442 12,13,14
187 11,12,14
250 11,13,14
16,17,20,21,80,8,84,85,272,273,
276,277,336,33 840,341 01,02,03,04
186 11,12,13,14




3.25 Commentson Postprocessing Operations

Postprocessingan determinepropertiesof interest,such
asnestingof contours. Extendingthis to a multi-level im-
age,regionscanbe annotatedvith a region type that they
enclose. Also, it may be of interestto modify the con-
tours from the pixel boundarieswhich lie on the grid of
the integers+0.25 in the algorithm definedabove. Arbi-
trary remappingof thesevaluescanbe performedeasily by
maintainingand using of the cornertype Descriptionof
the contoursmay notrequirethe distinctionbetweerinside
andoutsidecornersis not necessaryonly an indication of
the direction from the centerof the pixel to the corneris
relevant.

This postprocessingan also remapthe contour from
the quarter to the half-integer grid, therebypreservingex-
pectedhotionsof areaenclosef onepixel equalsoneunit,
or moving the contourbackto integer pixel centervalues,
therebypreservingpixel locations. The natureof the post-
processingnaturally dependsn the specificnatureof fur-
theruseto be madeof the contour

3.3 Extracting Multiple Contours

If the lists are not empty whenthe contouris completed,
there are additional contoursin the image. The methods
discussedpplyequivalentlyto interior or exterior contours.
Notethatif thereareremainingcontourstherewill always
be eitheran outsidecorneror its correspondingnside cor-
ner, soit sufficesto checkfor whetherthesecorresponding
lists (e.g.Ol1landIl) have entries.

4  Complexity Comparison for Per-
formance Evaluation

Performanceassessmeilig very problemdependentsoper
formancecomparisorwill betreatedapartfrom specificim-
plementationsr imagedirst, with someexamplessupplied
later In image operationsasymptoticresultsusing order
of magnitudearenotindicative of perfomancethe number
of operationsarein reality boundedy realimagesize,and
sothe magnitudeof the multipliers canbe moresignificant
thanthe strict orderof complexity of the operations.In or-
derto abstraciperformanceof this new methodcompared
to othermethodswe will consideifour basicoperationgor
contourextractionalgorithms:

1. Imageconvolution, for extraction of boundarypixels
or cornerfeaturesconstantC' + My x n;

2. 2-D searctfor nearesheighbor M, x nlog? n;

3. 1-D searchor nearesheighbor M3 x nlogn;

4. local imagesearchfor next neighborboundarypixel,
M4 X n.

wheren is the numberof boundaryfeatures(all contour
edgesor cornerfeaturesasappropriate).The methodswe
will considerare

(A) automatorcontourfollowing, complexity T4, wheren
is numberof all borderpixels;

(B) contour constructionfrom extraction of all borders,
compleity Ty +T> wheren is thenumberof all border
pixels;

(C) the describedmethod of contour constructionfrom
cornerfeatures,compleity T + T3 wheren is the
numberof cornerfeatures.

whereT; is thetime for operationi above. Typically, theor-
dermultiplier for operationl, M; will be extremelysmall,
simply thetime to readout the featuresof interest.The M,
and M3 arethe mostsignificant,they aresearche®f lists,
andcanbe expectedto be comparable.M, (indexing into
image)canbe expectedto be largerthan M, and M3 (ac-
cessingalist), but in the sameorderof magnitude.

Comparingthe new methodC to methodA, we canob-
sene thereis addeda constantanda very small term scal-
ing with the numberof featuresaddedfor operationl, but
asdescribedV/; is very smallsothis components notcon-
sideredto be significantfor possibleimagesizes,andthe
constantC' correspondingo convolutionwill dominatethis
term. Besideghis approximatelyconstantaddedterm, the
significant pixel-dependenterms are O(n;) comparedto
O(n.logn.), wherewe mustnow considerthe difference
betweenthe ny, the numberof borderpixels, andn., the
numberof cornerfeaturepixels.

ComparingmnethdC to methodB, we obsereaverysim-
ilar componentor the corvolution term, althoughwe are
dealingwith n; for methodB andn. for methodC. There
is a significantdifferencein the constructionphase,both
becausen; is greaterthann., and becauseof the greater
numberof operationdor 2-D search.Thefinal comparison
is O(ny log? np) for methodB andO(n.. log n.) for method
C.

Thesecomparisongritically comedown to the magni-
tudeof theratio %= € [0, 1]. As thisratio getssmaller the
adwantageof the neN methodgains.Two imagesareshovn
in Figs.4 and5. The formeris a personwalking, sege-
mentedbasedon motion. Theratio e is 0.53. Thesecond
is arandomimage,intendedo shav aworst- -casescenario,
Theratiois 0.78. Thisindicatesa favorablepositionfor the
new methodsincethis ratio is typically significantly less
thanone.

Regarding the possibleparallel implementationof the
algorithms,methodA is generallynot parallelizable,and
methodsB and C areparallelizablen a similar style. The
adwantage®f our proposednethodremainintact.



Figure 4: Exampleof contourfeatureratio, motion sey-
mentedpersonwalking binaryimage. Theratio of contour
cornerfeaturedo all edgefeaturess 0.53.

Figure5: Exampleof contourfeatureratio, randomimage
build underthedriteriaof randomlyaddingpixelsalongthe

boundaryof singlestartingpoint. Underthe closureassum-
tions chosen this shapehasthree contours,two of which

areinterior. Theratio of contourcornerfeaturego all edge
featureds 0.78.

5 Conclusions

A new algorithm for efficiently extracting contourswas
presented.The two stagescorner feature extraction and
contourgenemtion, tradeoff compleity with computation.
Thecornerfeatureextractionis aninherentlyhighly parallel
operation,generatingcornerfeaturesfrom an examination
of the3 x 3 neighborhoodenteredn eachpixel, resulting
in a setof cornerpointsannotatedvith featuretypes. The
contourgeneratiorfrom thisrepresentatioof theobjectis a
combinatorialoptimizationproblem,with a numberof new
constraintsintroducedwhich greatly constrainthe search,
in particularavoiding assessmertf two-dimensionalis-
tance.Although parallelalgorithmimplementatiorhasnot
beenexploredin this paper this combinatorialproblemap-
pearsto bedecomposable.

This methodcan potentially be extendedfrom horizon-
tal/verticalconnectvity to directconnectvity overdiagonal
runs. However, the constraintshat easethe combinatorial
stageof the presentedlgorithm,specificallythe reduction
in searchdimensionfrom two to one, would be replaced
with more challengingAz = Ay rules. It is likely that
postprocessinthe contourto recover diagonalsjf desired,
is apreferableapproach.
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